Measurements of Polarization of Heavy Mesons at CDF XIX International Workshop on Deep-Inelastic Scattering and Related Subjects April 11-15, 2011 Heather Kay Gerberich University of Illinois Urbana-Champaign for the CDF Collaboration ### Outline - Polarization - Motivation - Background of theory and experimental results - Measurement method - CDF Run II Results - Comparison of results - Summary and Outlook # Polarization (Y(1S) $\rightarrow \mu\mu$): • Polarization is determined by measuring the angular distribution $\cos^2 \theta^*$: $dN/d(\cos \theta^*) \propto 1 + \alpha \cos^2 \theta^*$ where α is the polarization parameter Polarization is fully transverse : α =1 Polarization is fully longitudinal: α =-1 and θ^* is defined as the angle between μ^+ direction in Υ rest-frame and Υ direction in lab frame Diagrams of polarization angles with three different helicity states. When helicity states are equally populated, the vector mesons have zero polarization. This s-channel helicity frame is used at high p_T collider experiments. ## Motivation and Background - Quarkonium production has not been explained adequately by QCD model - Naively expect vector-meson production suppressed - Color Singlet Model - Require 3 hard gluons for colorless state (like OZI suppression) - CDF Run I found enhanced prompt J/ψ and ψ' production - $\sigma(\psi')$ is **50x** LO expectation - Feed-down from χ states should dominate J/ ψ prompt production - Two-gluon production - CDF Run I reported that ~30% of prompt J/ ψ came from χ states ## **Enter NRQCD Theory** - Non-Relativistic QCD introduces color octet model - Can largely fit J/ ψ and Y(1S) production spectra Production spectrum looks good! How well does NRQCD predict charmonium polarization? - Predict strong transverse polarization at high momentum $(p_T^2/M^2 >> 1)$ - Meson carries properties of the hard gluon parent Heavy Vector Meson Polarization Measurements at CDF #### Charmonium Polarization $dN/d(\cos \theta^*) \propto 1 + \alpha \cos^2 \theta^*$ - Inconsistent with NRQCD - Question: is the charm quark "heavy"? - The bottom quark is! - Newer NNLO[★] models predict longitudinal Y polarization ## NNLO* Can Explain $\Upsilon(1s)$ Production - Predicting production spectra not a sufficient test of models - Need polarization, too. - NNLO * model predicts longitudinal Y(1s) polarization at high p_T #### Measurement Method $dN/d(\cos \theta^*) \propto 1 + \alpha \cos^2 \theta^*$ - Measure $\Upsilon \rightarrow \mu\mu$ yield in bins of p_{τ} and $\cos\theta^*$ - Correct for apparatus acceptance and trigger conditions that affect angular distribution - Use MC samples generated with fully transverse (α =1) and fully longitudinal (α =-1) polarizations as templates - These templates are weighted to find the proper admixture of polarization that agrees with the data - Proper treatment of background is crucial - Use sideband angular distribution to isolate signal angular distribution - Make simultaneous fit to polarization parameter and background in $\cos\theta^*$ bins # $\Upsilon \rightarrow \mu^+ \mu^-$ Mass Distribution - 2.9 fb⁻¹ - 83,000 Y(1S) candidates - |y|<0.6 - Resolve 3 peaks # $\Upsilon(1S) \rightarrow \mu^+ \mu^-$ Mass Fits in p_T bins - Fits in p_T bins - Shape used when subdividing into $\cos \theta^*$ bins # Cosθ* Distributions and Template Fits - High p_T bin is most sensitive to differences between models - Suffers from acceptance limits #### Results - Υ (1S) prompt polarization, including feed-down from χ_b , Υ (nS) - Green band is NRQCD prediction including feeddown (PRD 63, 071502 (2000)) ### Systematic Uncertainties - Dominated by - Fitting/counting technique - Trigger efficiency turn-on - Small | $\Upsilon(1S)$ Polarization | | | | |-----------------------------|-----------------|-----------------|---| | $p_T(\Upsilon)[GeV/c]$ | Data Yield | Background | η | | 2-3 | 17316 ± 294 | 11147 ± 172 | $0.332 \pm 0.020(stat) \pm 0.003(syst)$ | | 3-4 | 16819 ± 283 | 9819 ± 161 | $0.317 \pm 0.019(stat) \pm 0.003(syst)$ | | 4-6 | 22012 ± 312 | 10636 ± 168 | $0.315 \pm 0.019(stat) \pm 0.003(syst)$ | | 6-8 | 11291 ± 217 | 4300 ± 107 | $0.326 \pm 0.032(stat) \pm 0.003(syst)$ | | 8-12 | 9846 ± 197 | 3104 ± 91 | $0.351 \pm 0.038(stat) \pm 0.003(syst)$ | | 12-17 | 3740 ± 117 | 1035 ± 53 | $0.290 \pm 0.058(stat) \pm 0.003(syst)$ | | 17-23 | 1182 ± 71 | 372 ± 32 | $0.586 \pm 0.126(stat) \pm 0.003(syst)$ | | 23-40 | 430 ± 47 | 208 ± 23 | $0.685 \pm 0.229(stat) \pm 0.003(syst)$ | Note: η is a fitting parameter defined as $\eta = \frac{\sigma_L}{\sigma_T + \sigma_L} = \frac{1 - \alpha}{3 + \alpha}$ $$\eta = \frac{\sigma_L}{\sigma_T + \sigma_L} = \frac{1 - \alpha}{3 + \alpha}$$ # Results: CDF Run II and Run I Comparison - Polarization is small for $p_T < 20 \text{ GeV}$ - Run II data show trend to longitudinal polarization at high p_T ## Results: CDF and DØ Comparison - CDF and DØ results largely inconsistent - Use similar techniques - Different rapidity regions - CDF: |y|<0.6 DØ: |y|<1.8 ## Summary and Outlook - Vector meson polarization measurements are vital to understanding NRQCD and other production models - CDF has measured the $\Upsilon(1S)$ polarization using 2.9/fb of data - Measurement showed trend toward longitudinal polarization with increasing p_T - CDF Run I and Run II results are consistent - CDF and D0 Run II results show different trends - Experimental and theoretical puzzles still need to be understood - Extending analyses at CDF - Include $\Upsilon(2S)$ and $\Upsilon(3S)$ - Increase data sample